
PROCESSING EXTENSION FOR THE SPECTRAL DATABASE SPECCHIO

Andreas Hueni a, Mathias Kneubuehler a, Jens Nieke b and Klaus I. Itten a

a
 University of Zürich, Department of Geography, RSL, Zürich, Switzerland - (ahueni, kneub, itten)@geo.uzh.ch

b
 ESA-ESTEC, Noordwijk, The Netherlands - Jens.Nieke@esa.int

KEY WORDS: spectral database, spectroradiometer, spectral space, data processing

ABSTRACT:

SPECCHIO is a spectral database combined with user-friendly interface software designed to store spectral data acquired by

spectroradiometers and associated metadata. SPECCHIO was developed to support long-term usability and data sharing between

researchers. The user interface focused on three main tasks: data input, data editing and data export.

Experience, however, has shown that users are interested in seeing spectral processing capabilities added to SPECCHIO. Such

operations are to be applied to the data during data output, leaving the original data in the database intact. Typical examples are the

removal of noisy wavelength regions, spectral convolutions to other sensors or statistical calculations such as mean or standard

deviation. The main requirements of such processing capabilities are: (a) handling of different sensors and instruments used during

data capture, (b) user configurable sequences of operations and (c) visualisation of results and processing progress.

A solution to the problem of such a configurable and generic processing, based on the concept of features spaces, has been

implemented as part of the SPECCHIO software package and is included from version 2.0 onwards.

1. INTRODUCTION

Collection of spectral measurements by spectroradiometers is

undertaken for two main reasons: (a) basic investigation of

the relationship between physical or biochemical properties

and the electromagnetic reflectance of objects and (b)

calibration, validation and simulation of remote sensing

imagery and its data products.

Although the use of spectroradiometers has become

widespread in various fields of research, the management and

processing of the resulting spectral data remains an issue

largely untouched and only a few tools are available to help

the researchers. The SPECCHIO system has been developed

at the Remote Sensing Laboratories (RSL) with a focus on

data management. The spectral data are at the centre of the

data model and are supported by a host of metadata that

ensure the long-term usability and shareability (Hueni et al.,

2009).

During design, special attention was paid to keep the data

input mechanism as automated as possible and to offer the

user the option to update metadata of several records with a

singular operation. Consequently, the system is capable of

loading large numbers of spectra in short time, described by a

considerable number of auto-generated metadata.

The SPECCHIO data schema bases on a MySQL database

(MySQL AB, 2005) and the end user application is written in

Java (Sun Microsystems Inc., 2006). The SPECCHIO system

can therefore be operated in heterogeneous computing

environments, offering multiuser access to a centralized

database and enabling easy data sharing within and even

across research groups.

The need for a processing extension arose due to three main

reasons: (a) some users would like to apply some simple

functions to the data before exporting to a file for subsequent

use, e.g. mean value calculation, (b) some calculations should

usually be applied before exporting the data, like application

of reference panel correction factors and (c) various

calculations may be needed to develop information based on

data stored in the database, which may be too complex or

cumbersome to carry out without the full spectral/metadata

information context available within the system, e.g. the

retrieval of BRF from goniometer measurements (Hueni et

al., 2008).

2. REQUIREMENTS

2.1 Structure

The structure of processing operations applied to data can be

described by a directed graph, as can be observed in Figure 4.

Such a network consists of processing modules and data

sources/sinks. Data is read from the sources by the modules

connected to them, transformed within the modules and

written to the connected sinks.

Such a modular structure provides high flexibility: even

complex processing sequences can be built by connecting

basic components (Hueni and Tuohy, 2006). The use of

modules also helps to minimize the code redundancy.

2.2 Data Integrity

SPECCHIO has been designed as a repository for spectral

data. Processing components are not to modify the original

database contents. However, it would be possible for

components to create new database entries in the system. In

any case, full reprocessing functionality must be guaranteed,

i.e. identically configured processing networks must produce

the same results with every run.

2.3 Interactivity and Visualisation

Design and configuration of processing networks should be

possible in two main ways: (a) as an interactive procedure,

applicable by the end user and (b) as an internal API

(Application Programmers Interface) that allows the

definition of either complex or more often used processing

sequences programmatically.

The network, the processing progress and the changes

applied to the data should be presented to the user in a visual

manner, giving a comprehensive overview of the processing

at all times.

Monitoring of both intermediate and final products of the

processing network must be possible by either visual output

or by output to files. This enables the user to check if the

processing is having the desired effect on the data.

The processing must not influence the responsiveness of the

system, allowing the execution of time-consuming

computations while the user can continue to work. Several

instances of the processing component should be able to co-

exist without influencing each other.

2.4 Generic Design

The SPECCHIO database supports a variety of

spectroradiometers. In fact, any sensor that produces point

measurements related to wavelength can be modelled in

SPECCHIO.

Processing modules should not be targeted at a specific

sensor but written as generically as possible. However, care

must be taken, as not to mix data of different sensors in an

uncontrolled manner and the system must provide according

functionality. From a stricter point of view, the mixing of

data is to be controlled even more extensively: data captured

by differing instrument of the same sensor model are not to

be mixed before inter-calibration factors have been applied.

Depending on the instruments, the same may even apply for

spectra acquired by the same instrument but with different

instrument calibrations. Finally, the measurement unit

(digital number, radiance, absorbance, transmission or

reflectance) further defines what measurements may logically

be combined.

3. CONCEPTS

3.1 Space Processing Network

An analysis of the structure of processing networks in the

context of spectral processing shows that they are formed by

two type of components connected by edges: processing

modules and data sinks/sources. The modules are effecting

the transport of data from sources to sinks, modifying them

along the way. These data sources/sinks need to be able to

hold collections of spectra acquired by different instruments

and the number of data points per spectrum may change as

the data progresses through the network.

A solution to the generic, flexible requirements outlined

above is given by the concept of the ‘Space Processing

Network’. It is based upon the definition of feature spaces by

Landgrebe (1997). The continuous, spectral response of an

object is transformed into a discrete space by the sampling

instrument. This transformation is defined by the sensor

characteristics (Hüni et al., 2007a). Thus, data captured by

different instruments are contained by differing spaces. A

space has a dimensionality equal to the number of bands of

the used sensor and the spectra are data vectors contained

within this space.

Within the SPECCHIO design, spaces are therefore

containing the following information: number of dimensions,

wavelength per dimension, collection of all data vectors and a

reference to the database spectrum record for every data

vector. The database reference ensures that the full context of

every spectrum can be retrieved from the database by a

processing module if required while keeping the memory

footprint of the space to a minimum.

Processing modules are effecting a transformation on a space,

i.e. the spectral data vectors of the input space are

transformed to an output space. The algorithm of the

processing module defines the dimensionality of the resulting

space. This is illustrated in Figure 1 with an input space of

dimensionality N being transformed into another discrete

space of dimensionality M. Although processing modules

tend to have singular input/output in most cases, they may

have multiple inputs and generate multiple outputs.

Figure 1. Transformation into a new space by a processing

module

3.2 Space Factory

The generation of spaces can be triggered in two principal

ways: (a) based on a query by the user and (b) as a result of

the transformation of an input space by a processing module.

The Space Factory is a conceptual, central component of the

SPECCHIO system. It creates new spaces based on given

inputs and contains the logic to form ‘non-mixed’ spaces.

Spaces are used throughout the system for processing,

visualisation and file output. In all these cases, vector data

must be related to spectral dimensions and this information is

held by the space. Moreover, a space can hold only spectra

that are of the same dimension. It is the job of the Space

Factory to create such spaces.

Assume the use case of displaying spectral plots of a number

of spectra. In a first step, the user will select the spectra to be

plotted by effecting a subspace projection (Hüni et al.,

2007b). Internally, this will yield a number of record id’s that

are matching the user’s selection. These ids are now handed

to the Space Factory. Internally, spaces are created for all

existing combinations of the respective sensors, instruments,

calibrations and measurement units associated with the

spectra (see Figure 2).

Figure 2. Building spaces based on user defined subspace projections

The Space Factory returns a list of the created spaces. Each

space can now in turn be used as an input argument of a

plotting class instance. Utilizing the Space Factory ensures

that all spectra contained by a space have a common

wavelength per band and the same measurement unit, i.e. the

following processing modules do not need to carry out

uniformity checks but can apply their algorithms directly, e.g.

plotting of spectral vectors against the common wavelengths

of the space.

3.3 Processing Flow Control and Synchronisation

This sub-concept provides a solution to the tricky problem of

triggering the processing of data by the single modules.

The network structure of the processing modules and spaces

implies that a sequential flow control is cumbersome to be

employed. A process with several inputs can only be started

when all the input spaces are ready, i.e. the modules

preceding the input spaces must have finished their

processing as well. Managing these dependencies with a

central controlling instance would require the analysis of the

topography of the underlying network. Furthermore, some

processes may also be run in parallel and the requirements

state that the application should not be blocked during

processing.

The chosen solution utilises the fact that the network

structure defines the order of processing. Spreading the

runtime behaviour over all network components eliminates

the need for centralized control. The mechanism is quite

simple: a processing module needs to wait till all input spaces

are ready and then can start processing. Such behaviour can

be implemented by using threads and monitors (Hoare,

1975). Every processing module is implemented as an

individual thread, ensuring that the system remains

responsive during processing and parallel processing

capability is provided. Threads are calling a ‘data ready’

method on all input spaces in order to check of the processing

can be started. The use of monitors to guard the ‘data ready’

method of the spaces ensures that a thread is waiting (i.e.

sleeping) till the space changes the status to ‘data ready’ and

signals all waiting threads accordingly.

Processing is started by forcing the starting space to load its

spectra from the database. The loading ends with the status of

the space being set to ‘data ready’ and waking the threads

waiting on the space’s monitor. Consequently, the whole

processing network will gradually be executed with the

processing flow being implicit part of the network’s

components behaviour.

3.4 Graphical Representation

The graphical representation of the processing network was

separated as much as possible from the processing

mechanisms. For this reason, an existing, specialized

visualisation package was employed. JGraph is a freely

available, Java Swing User Interface compliant component

for the visualisation of graphs (JGraph Ltd, 2008).

Both spaces and processing modules hold a reference to a

GraphCell instance, which is the base class of all vertices

within the JGraph package. These cells are then placed on a

graph component and automatically drawn and updated. The

graph itself is held by a ProcessingPlane instance. The

ProcessingPlane is an object that acts as a container for all

spaces and processing modules. The logical and graphical

connections of these components are however kept separated,

i.e. an edge between two vertices is only a graphical

representation of the internal logical link and is not used for

the processing. Thus, it would be feasible to build a working

processing network without any graphical representation.

4. RESULTS – A CASE STUDY

This section employs a case study to demonstrate the

implemented processing system and serve as a proof of

concept.

Reflectance is one of the basic quantities that are regularly

measured in the remote sensing context. It proves useful as it

normalizes the reflected energy to the irradiance and thus

eases the comparison of signatures taken under varying

illumination conditions. A common technique to acquire

reflectance is based on taking reference readings from a

reference panel (Pfitzner et al., 2005). Ideally, such a panel

would be 100% reflective over all wavelengths. However, it

is a technical challenge to engineer such a material. The well

know Spectralon panels are delivered with calibration reports

stating the spectral reflective properties (for a plot see Figure

3) (Labsphere Inc.).

Figure 3. Spectralon Spectral Reflectance

The acquired reflectance spectra can be correct by post-

processing if the non-idealness of the used panel is known. In

the case of radiance measurements of both target and

reference panel, the corrected reflectance is calculated by:

(1)

The conversion of radiance to reflectance including the panel

correction is expected to be a quite common processing step.

However, the application of the correction factors tends to be

cumbersome when applied manually every time.

Furthermore, manual correction would be exceedingly

tiresome when for a given collection of spectra more than one

panel or more than one calibration set per panel applied.

The conversion process can easily be modelled as a

processing network containing a number of processing

modules and spaces (see Figure 4). The input space is shown

in the upper left corner of the graph. It contains 66 vectors

and has a dimensionality of 2151 bands. Note that the spaces

are consecutively numbered in the upper left of the respective

boxes. The first module ‘Radiance to Reflectance’ is building

a ratio of the target and reference radiances:

(2)

Figure 4: Processing network of the case study showing a conversion of radiance to reflectance including a correction for the

reference panel non-idealness

The selection of the reference reading for each target

measurement is fully automatic as the according information

is already contained in the metadata. For an explanation of

how such links are created please refer to Hueni et al (2009).

The output of the first module is a further space (no 1). It still

contains 66 vectors, i.e. spectra, but these are now

reflectances.

Space number 1 serves as input for the module ‘Get Panel

Correction Factors’. This module uses metadata queries on

the database to select the correction factors of the used panels

that apply for the time of data capture. This results in a new

space number 2 holding one vector of dimensionality 2251.

This dimensionality results from the Spectralon calibration

data where the reflectance of the panel is specified from 250-

2500nm in 1nm steps. The correction factors cannot be

applied to the spectra directly because of the dimensional

mismatch. Therefore, a ‘Waveband filtering’ module is

attached to space 2 and configured to cut wavelengths

between 250 and 350nm. This results in a space number 4,

whose dimensions are now tallying with the spectra in space

number 1.

Spaces 1 and 4 are used as input for the module ‘Correct for

Panel’. The module ensures that the correct factors are

applied to the spectra even in the case of multiple panels

being used during data capture. The corrected reflectances

are contained in space number 5.

Finally, the module ‘Delta’ calculates the difference between

corrected and uncorrected reflectances. The result of the

correction procedure can be assessed visually by adding

visualisation modules to the network (see Figure 5 showing

spectral plots of the spectra contained by spaces 5 and 6).

5. CONCLUSIONS

The provision of processing capabilities within spectral

database software packages is one of the features that many

users would like to see. Apart from direct end user

requirements, processing extensions are also of interest for

the generation of information based on data stored in the

database, such as the provision of BRF data retrieved from

goniometer datasets (Hueni et al., 2008).

The technical requirements of such a processing feature are

quite demanding, as a generic framework must be developed

that can handle the data stemming from heterogeneous

sensors and instruments and offer the possibility of

interactive definition and configuration of processing

operations.

It could be demonstrated that such a system can be designed

and implemented successfully based on the concept of feature

spaces and by utilising the multithreading capability of Java

to control the processing flow while guaranteeing parallel

processing and retaining system responsiveness. The

processing extension will be integral part of the SPECCHIO

application and will be featured starting with version 2.0.

Figure 5: Processing network with added visualisation modules and according output plots

RSL maintains an online version of the SPECCHIO database

and interested researchers can acquire a database account for

testing and data sharing purposes. For further information,

please visit to the SPECCHIO website (www.specchio.ch).

6. REFERENCES

Hoare, C. A. R., 1975. Monitors: An Operating System

Structuring Concept. Communications of the ACM 17, 549-

557.

Hueni, A., Nieke, J., Schopfer, J., Kneubühler, M., Itten, K.,

2009. The spectral database SPECCHIO for improved long

term usability and data sharing. Computers & Geosciences

35(3), 557-565.

Hueni, A., Schopfer, J., Schläpfer, D., Kneubuehler, M.,

Nieke, J., 2008. PRE-PROCESSING OF DUAL-VIEW

FIGOS DATA: TOWARDS OPERATIONAL BRDF

RETRIEVAL. In: Proceedings ISPRS, Beijing.

Hueni, A., Tuohy, M., 2006. Spectroradiometer Data

Structuring, Pre-Processing and Analysis - An IT Based

Approach. Journal of Spatial Science 51(2), 93-102.

Hüni, A., Nieke, J., Schopfer, J., Kneubühler, M., Itten, K.,

2007a. 2nd Generation of RSL's Spectrum Database

"SPECCHIO". In: Proceedings Schaepman, M. E., Liang, S.,

Groot, N. E., Kneubühler, M. (Eds.), 10th Intl. Symposium

on Physical Measurements and Spectral Signatures in

Remote Sensing, Davos (CH), XXXVI, Part 7/C50, pp. 505–

510.

Hüni, A., Nieke, J., Schopfer, J., Kneubühler, M., Itten, K.,

2007b, 23-25 April 2007. Metadata of Spectral Data

Collections. In: Proceedings 5th EARSeL Workshop on

Imaging Spectroscopy, Bruges, Belgium, pp. 14.

JGraph and JGraph Layout Pro User Manual, 2008. Version

JGraph Version 5.12.0.0th, JGraph Ltd, Northampton, UK,

140 pp.

Labsphere Inc., North Sutton, NH, USA.

Landgrebe, D., 1997. On Information Extraction Principles

for Hyperspectral Data, Purdue University, West Lafayette,

IN, 34 pp.

MySQL, 2005. MySQL AB.

Pfitzner, K., Bartolo, R. E., Ryan, B., Bollhöfer, A., 2005.

Issues to consider when designing a spectral library database.

In: Proceedings SSC 2005 Spatial Intelligence, Innovation

and Praxis: The national biennial Conference of the Spatial

Sciences Institute, Melbourne, pp. 416-425.

JavaTM 2 Platform Standard Edition, 2006. Version 5.0, Sun

Microsystems Inc., Santa Clara, CA.

