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ABSTRACT: 
 

SPECCHIO is a spectral database combined with user-friendly interface software designed to store spectral data acquired by 

spectroradiometers and associated metadata. SPECCHIO was developed to support long-term usability and data sharing between 

researchers. The user interface focused on three main tasks: data input, data editing and data export. 

Experience, however, has shown that users are interested in seeing spectral processing capabilities added to SPECCHIO. Such 

operations are to be applied to the data during data output, leaving the original data in the database intact. Typical examples are the 

removal of noisy wavelength regions, spectral convolutions to other sensors or statistical calculations such as mean or standard 

deviation. The main requirements of such processing capabilities are: (a) handling of different sensors and instruments used during 

data capture, (b) user configurable sequences of operations and (c) visualisation of results and processing progress. 

A solution to the problem of such a configurable and generic processing, based on the concept of features spaces, has been 

implemented as part of the SPECCHIO software package and is included from version 2.0 onwards. 

   

 

 

1. INTRODUCTION 

Collection of spectral measurements by spectroradiometers is 

undertaken for two main reasons: (a) basic investigation of 

the relationship between physical or biochemical properties 

and the electromagnetic reflectance of objects and (b) 

calibration, validation and simulation of remote sensing 

imagery and its data products. 

Although the use of spectroradiometers has become 

widespread in various fields of research, the management and 

processing of the resulting spectral data remains an issue 

largely untouched and only a few tools are available to help 

the researchers. The SPECCHIO system has been developed 

at the Remote Sensing Laboratories (RSL) with a focus on 

data management. The spectral data are at the centre of the 

data model and are supported by a host of metadata that 

ensure the long-term usability and shareability (Hueni et al., 

2009).  

During design, special attention was paid to keep the data 

input mechanism as automated as possible and to offer the 

user the option to update metadata of several records with a 

singular operation. Consequently, the system is capable of 

loading large numbers of spectra in short time, described by a 

considerable number of auto-generated metadata.  

The SPECCHIO data schema bases on a MySQL database 

(MySQL AB, 2005) and the end user application is written in 

Java (Sun Microsystems Inc., 2006). The SPECCHIO system 

can therefore be operated in heterogeneous computing 

environments, offering multiuser access to a centralized 

database and enabling easy data sharing within and even 

across research groups.  

The need for a processing extension arose due to three main 

reasons: (a) some users would like to apply some simple 

functions to the data before exporting to a file for subsequent 

use, e.g. mean value calculation, (b) some calculations should 

usually be applied before exporting the data, like application 

of reference panel correction factors and (c) various 

calculations may be needed to develop information based on 

data stored in the database, which may be too complex or 

cumbersome to carry out without the full spectral/metadata 

information context available within the system, e.g. the 

retrieval of BRF from goniometer measurements (Hueni et 

al., 2008). 

 

 

2. REQUIREMENTS 

2.1 Structure 

The structure of processing operations applied to data can be 

described by a directed graph, as can be observed in Figure 4. 

Such a network consists of processing modules and data 

sources/sinks. Data is read from the sources by the modules 

connected to them, transformed within the modules and 

written to the connected sinks. 

Such a modular structure provides high flexibility: even 

complex processing sequences can be built by connecting 

basic components (Hueni and Tuohy, 2006). The use of 

modules also helps to minimize the code redundancy.  

 

2.2 Data Integrity 

SPECCHIO has been designed as a repository for spectral 

data. Processing components are not to modify the original 

database contents. However, it would be possible for 

components to create new database entries in the system. In 

any case, full reprocessing functionality must be guaranteed, 

i.e. identically configured processing networks must produce 

the same results with every run.  

 

2.3 Interactivity and Visualisation 

Design and configuration of processing networks should be 

possible in two main ways: (a) as an interactive procedure, 

applicable by the end user and (b) as an internal API 

(Application Programmers Interface) that allows the 



 

definition of either complex or more often used processing 

sequences programmatically. 

The network, the processing progress and the changes 

applied to the data should be presented to the user in a visual 

manner, giving a comprehensive overview of the processing 

at all times.  

Monitoring of both intermediate and final products of the 

processing network must be possible by either visual output 

or by output to files. This enables the user to check if the 

processing is having the desired effect on the data. 

The processing must not influence the responsiveness of the 

system, allowing the execution of time-consuming 

computations while the user can continue to work. Several 

instances of the processing component should be able to co-

exist without influencing each other. 

 

2.4 Generic Design 

The SPECCHIO database supports a variety of 

spectroradiometers. In fact, any sensor that produces point 

measurements related to wavelength can be modelled in 

SPECCHIO.  

Processing modules should not be targeted at a specific 

sensor but written as generically as possible. However, care 

must be taken, as not to mix data of different sensors in an 

uncontrolled manner and the system must provide according 

functionality. From a stricter point of view, the mixing of 

data is to be controlled even more extensively: data captured 

by differing instrument of the same sensor model are not to 

be mixed before inter-calibration factors have been applied. 

Depending on the instruments, the same may even apply for 

spectra acquired by the same instrument but with different 

instrument calibrations. Finally, the measurement unit 

(digital number, radiance, absorbance, transmission or 

reflectance) further defines what measurements may logically 

be combined. 

 

3. CONCEPTS 

 

3.1 Space Processing Network 

An analysis of the structure of processing networks in the 

context of spectral processing shows that they are formed by 

two type of components connected by edges: processing 

modules and data sinks/sources. The modules are effecting 

the transport of data from sources to sinks, modifying them 

along the way. These data sources/sinks need to be able to 

hold collections of spectra acquired by different instruments 

and the number of data points per spectrum may change as 

the data progresses through the network. 

A solution to the generic, flexible requirements outlined 

above is given by the concept of the ‘Space Processing 

Network’. It is based upon the definition of feature spaces by 

Landgrebe (1997). The continuous, spectral response of an 

object is transformed into a discrete space by the sampling 

instrument. This transformation is defined by the sensor 

characteristics (Hüni et al., 2007a). Thus, data captured by 

different instruments are contained by differing spaces. A 

space has a dimensionality equal to the number of bands of 

the used sensor and the spectra are data vectors contained 

within this space.  

Within the SPECCHIO design, spaces are therefore 

containing the following information: number of dimensions, 

wavelength per dimension, collection of all data vectors and a 

reference to the database spectrum record for every data 

vector. The database reference ensures that the full context of 

every spectrum can be retrieved from the database by a 

processing module if required while keeping the memory 

footprint of the space to a minimum. 

Processing modules are effecting a transformation on a space, 

i.e. the spectral data vectors of the input space are 

transformed to an output space. The algorithm of the 

processing module defines the dimensionality of the resulting 

space. This is illustrated in Figure 1 with an input space of 

dimensionality N being transformed into another discrete 

space of dimensionality M. Although processing modules 

tend to have singular input/output in most cases, they may 

have multiple inputs and generate multiple outputs. 

 

 
Figure 1. Transformation into a new space by a processing 

module 

 

 

3.2 Space Factory 

The generation of spaces can be triggered in two principal 

ways: (a) based on a query by the user and (b) as a result of 

the transformation of an input space by a processing module. 

The Space Factory is a conceptual, central component of the 

SPECCHIO system. It creates new spaces based on given 

inputs and contains the logic to form ‘non-mixed’ spaces. 

Spaces are used throughout the system for processing, 

visualisation and file output. In all these cases, vector data 

must be related to spectral dimensions and this information is 

held by the space. Moreover, a space can hold only spectra 

that are of the same dimension. It is the job of the Space 

Factory to create such spaces. 

Assume the use case of displaying spectral plots of a number 

of spectra. In a first step, the user will select the spectra to be 

plotted by effecting a subspace projection (Hüni et al., 

2007b). Internally, this will yield a number of record id’s that 

are matching the user’s selection. These ids are now handed 

to the Space Factory. Internally, spaces are created for all 

existing combinations of the respective sensors, instruments, 

calibrations and measurement units associated with the 

spectra (see Figure 2). 

 

 



 

 
Figure 2. Building spaces based on user defined subspace projections 

 

 

The Space Factory returns a list of the created spaces. Each 

space can now in turn be used as an input argument of a 

plotting class instance. Utilizing the Space Factory ensures 

that all spectra contained by a space have a common 

wavelength per band and the same measurement unit, i.e. the 

following processing modules do not need to carry out 

uniformity checks but can apply their algorithms directly, e.g. 

plotting of spectral vectors against the common wavelengths 

of the space. 

 

3.3 Processing Flow Control and Synchronisation 

This sub-concept provides a solution to the tricky problem of 

triggering the processing of data by the single modules.  

The network structure of the processing modules and spaces 

implies that a sequential flow control is cumbersome to be 

employed. A process with several inputs can only be started 

when all the input spaces are ready, i.e. the modules 

preceding the input spaces must have finished their 

processing as well. Managing these dependencies with a 

central controlling instance would require the analysis of the 

topography of the underlying network. Furthermore, some 

processes may also be run in parallel and the requirements 

state that the application should not be blocked during 

processing.  

The chosen solution utilises the fact that the network 

structure defines the order of processing. Spreading the 

runtime behaviour over all network components eliminates 

the need for centralized control. The mechanism is quite 

simple: a processing module needs to wait till all input spaces 

are ready and then can start processing. Such behaviour can 

be implemented by using threads and monitors (Hoare, 

1975). Every processing module is implemented as an 

individual thread, ensuring that the system remains 

responsive during processing and parallel processing 

capability is provided. Threads are calling a ‘data ready’ 

method on all input spaces in order to check of the processing 

can be started. The use of monitors to guard the ‘data ready’ 

method of the spaces ensures that a thread is waiting (i.e. 

sleeping) till the space changes the status to ‘data ready’ and 

signals all waiting threads accordingly. 

Processing is started by forcing the starting space to load its 

spectra from the database. The loading ends with the status of 

the space being set to ‘data ready’ and waking the threads 

waiting on the space’s monitor. Consequently, the whole 

processing network will gradually be executed with the 

processing flow being implicit part of the network’s 

components behaviour. 

 

3.4 Graphical Representation 

The graphical representation of the processing network was 

separated as much as possible from the processing 

mechanisms. For this reason, an existing, specialized 

visualisation package was employed. JGraph is a freely 

available, Java Swing User Interface compliant component 

for the visualisation of graphs (JGraph Ltd, 2008). 

Both spaces and processing modules hold a reference to a 

GraphCell instance, which is the base class of all vertices 

within the JGraph package. These cells are then placed on a 

graph component and automatically drawn and updated. The 

graph itself is held by a ProcessingPlane instance. The 

ProcessingPlane is an object that acts as a container for all 

spaces and processing modules. The logical and graphical 

connections of these components are however kept separated, 

i.e. an edge between two vertices is only a graphical 

representation of the internal logical link and is not used for 

the processing. Thus, it would be feasible to build a working 

processing network without any graphical representation. 

 

 

4. RESULTS – A CASE STUDY 

This section employs a case study to demonstrate the 

implemented processing system and serve as a proof of 

concept. 

Reflectance is one of the basic quantities that are regularly 

measured in the remote sensing context. It proves useful as it 

normalizes the reflected energy to the irradiance and thus 

eases the comparison of signatures taken under varying 

illumination conditions. A common technique to acquire 

reflectance is based on taking reference readings from a 

reference panel (Pfitzner et al., 2005). Ideally, such a panel 

would be 100% reflective over all wavelengths. However, it 

is a technical challenge to engineer such a material. The well 

know Spectralon panels are delivered with calibration reports 

stating the spectral reflective properties (for a plot see Figure 

3) (Labsphere Inc.). 



 

 
Figure 3. Spectralon Spectral Reflectance 

 

The acquired reflectance spectra can be correct by post-

processing if the non-idealness of the used panel is known. In 

the case of radiance measurements of both target and 

reference panel, the corrected reflectance is calculated by: 

 

 

 

(1) 

 

The conversion of radiance to reflectance including the panel 

correction is expected to be a quite common processing step. 

However, the application of the correction factors tends to be 

cumbersome when applied manually every time. 

Furthermore, manual correction would be exceedingly 

tiresome when for a given collection of spectra more than one 

panel or more than one calibration set per panel applied. 

The conversion process can easily be modelled as a 

processing network containing a number of processing 

modules and spaces (see Figure 4). The input space is shown 

in the upper left corner of the graph. It contains 66 vectors 

and has a dimensionality of 2151 bands. Note that the spaces 

are consecutively numbered in the upper left of the respective 

boxes. The first module ‘Radiance to Reflectance’ is building 

a ratio of the target and reference radiances: 

 

 

 

(2) 

  

 

 

 
Figure 4: Processing network of the case study showing a conversion of radiance to reflectance including a correction for the 

reference panel non-idealness 

 

  



 

 

The selection of the reference reading for each target 

measurement is fully automatic as the according information 

is already contained in the metadata. For an explanation of 

how such links are created please refer to Hueni et al (2009). 

The output of the first module is a further space (no 1). It still 

contains 66 vectors, i.e. spectra, but these are now 

reflectances. 

Space number 1 serves as input for the module ‘Get Panel 

Correction Factors’. This module uses metadata queries on 

the database to select the correction factors of the used panels 

that apply for the time of data capture. This results in a new 

space number 2 holding one vector of dimensionality 2251. 

This dimensionality results from the Spectralon calibration 

data where the reflectance of the panel is specified from 250-

2500nm in 1nm steps. The correction factors cannot be 

applied to the spectra directly because of the dimensional 

mismatch. Therefore, a ‘Waveband filtering’ module is 

attached to space 2 and configured to cut wavelengths 

between 250 and 350nm. This results in a space number 4, 

whose dimensions are now tallying with the spectra in space 

number 1. 

Spaces 1 and 4 are used as input for the module ‘Correct for 

Panel’. The module ensures that the correct factors are 

applied to the spectra even in the case of multiple panels 

being used during data capture. The corrected reflectances 

are contained in space number 5.  

Finally, the module ‘Delta’ calculates the difference between 

corrected and uncorrected reflectances. The result of the 

correction procedure can be assessed visually by adding 

visualisation modules to the network (see Figure 5 showing 

spectral plots of the spectra contained by spaces 5 and 6). 

 

5. CONCLUSIONS 

The provision of processing capabilities within spectral 

database software packages is one of the features that many 

users would like to see. Apart from direct end user 

requirements, processing extensions are also of interest for 

the generation of information based on data stored in the 

database, such as the provision of BRF data retrieved from 

goniometer datasets (Hueni et al., 2008). 

The technical requirements of such a processing feature are 

quite demanding, as a generic framework must be developed 

that can handle the data stemming from heterogeneous 

sensors and instruments and offer the possibility of 

interactive definition and configuration of processing 

operations. 

It could be demonstrated that such a system can be designed 

and implemented successfully based on the concept of feature 

spaces and by utilising the multithreading capability of Java 

to control the processing flow while guaranteeing parallel 

processing and retaining system responsiveness. The 

processing extension will be integral part of the SPECCHIO 

application and will be featured starting with version 2.0.

 

 
Figure 5: Processing network with added visualisation modules and according output plots 

  



 

RSL maintains an online version of the SPECCHIO database 

and interested researchers can acquire a database account for 

testing and data sharing purposes. For further information, 

please visit to the SPECCHIO website (www.specchio.ch). 
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